PHYSICAL / INORGANIC **CHEMISTRY**

Total Marks: 36

Max. Time: 40 min.

Topic: Chemical Kinetics

Type of Questions

M.M., Min.

- Single choice Objective ('-1' negative marking) Q.1 to Q.4 Multiple choice objective ('-1' negative marking) Q.5 to Q.6
- (3 marks 3 min.)

[12, 12]

- (4 marks 4 min.)

[8, 8]

- Subjective Questions ('-1' negative marking) Q.7 to Q.10
- (4 marks 5 min.)

[16, 20]

1. For a two step reaction

$$A \stackrel{K_1}{=} R + B$$

$$R + C \xrightarrow{K_3} Products$$

(where, R is a reactive intermediate, whose concentration is maintained at some low steady state throughout the reaction) the rate law expression will be

(A)
$$\frac{dx}{dt} = \frac{k_1[A]}{1 + \frac{k_2[B]}{k_3[C]}}$$
 (B) $\frac{dx}{dt} = k_1[A]$ (C) $\frac{dx}{dt} = k_1[R][C]$ (D) $\frac{dx}{dt} = k_1[A][B][R]$

(B)
$$\frac{dx}{dt} = k_1 [A$$

(C)
$$\frac{dx}{dt} = k_1 [R] [C]$$

(D)
$$\frac{dx}{dt} = k_1 [A] [B] [R]$$

For 2A $\xrightarrow{k_1}$ B + 3C, 2C $\xrightarrow{k_2}$ 3D, assuming all reactions to be single step (Elementary) reactions, 2.

which of the following is correct:

- (A) d[C] / dt = $3k_1[A]^2 3 k_{-1} [B][C]^3 2k_2[C]^2$ (B) d[B] / dt = $k_1 [A]^2$
- (C) $d[A] / dt = 2k_{-1}[B][C]^3 2k_1[B][C]^3$
- (D) None
- For the following parallel chain reaction A the overall half life of A is 12 hours. If rate of formation 3.

of C is 60% of a rate of decomposition of A then what will be half life of A while it is converting into B?

- (A) 40 hours
- (B) 60 hours
- (C) 50 hours
- (D) 30 hours

For the following parallel chain reaction 4.

if the sum of the concentration of B and C at

any time is 2M then, what will be [B], and [C], respectively?

- (A) $\frac{11}{12}M\frac{13}{12}M$ (B) $\frac{3}{4}M, \frac{5}{4}M$ (C) $\frac{4}{5}M, \frac{6}{5}M$ (D) $\frac{8}{13}M, \frac{18}{13}M$

5. For the reaction $CH_4 + Br_2 \rightarrow CH_3Br + HBr$, the experimental data require the following rate equation:

$$\frac{d}{dt} [CH_3Br] = \frac{k_1[CH_4][Br_2]}{1+k_2[HBr]/[Br_2]}$$

Which of the following is/are true regarding this?

- (A) The reaction is a single step reaction
- (B) The reaction is 2nd order in the initial stages { $[HBr] \approx 0$ }
- (C) The reaction is 2nd order in the final stages $\{[Br_2] \approx 0\}$
- (D) The molecularity of the reaction is two.
- 6. Consider the following case of COMPETING 1ST ORDER REACTIONS

After the start of the reaction at t = 0 with only A, the [C] is equal to the [D] at all times. The time in which all three concentrations will be equal is given by

7. For the reaction $Cl_2 + CO \rightarrow Cl_2CO$ the rate law is :

$$\frac{d \left[\text{CI}_2 \text{CO} \right]}{dt} = k \left[\text{CI}_2 \right]^{3/2} \left[\text{CO} \right]$$

The mechanism which is accepted is

$$CI_2 + M \xrightarrow{K_1} 2CI + M \text{ (fast)}$$
 $CI + CO + M \xrightarrow{K_2} CICO + M \text{ (fast)}$
 $CICO + CI_1 = \frac{k_3}{k_3} = CICO + CI_2 \text{ (slow)}$

 $CICO + CI_2 \xrightarrow{k_3} CI_2CO + CI$ (slow) Find the expression relating k with the other constants given.

Time the expression relating it with the ether echetante given.

8. Write $\frac{dC_D}{dt}$ for the following parallel series 1st order reaction

- 9. For the reaction process A + B ——— products, the rate is first order w.r.t. A and second order w.r.t. B. If 1 mole each of A and B were introduced into a 1 L vessel and the initial rate was 1 × 10⁻² (mol/L sec). Calculate the rate when half the reactants has been converted into products.
- **10.** The catalysed decomposition of N₂O by gold at 900°C and at an initial pressure of 200 mm, is 50% complete in 53 minutes and 73% complete in 100 minutes.
 - (A) What is the order of the reaction?
 - (B) How much of it will decompose in 100 minutes at the same temperature but at initial pressure of 600 mm of Hg?

Answer Kev

DPP No. # 53

1.
$$A \xrightarrow{K_1} R + B \qquad R + C \xrightarrow{K_3} \text{ product.}$$

$$A \xrightarrow{K_1} R + B$$
:

$$R + B \xrightarrow{K_2} A$$
;

$$A \xrightarrow{K_1} R + B$$
; $R + B \xrightarrow{K_2} A$; $R + C \xrightarrow{K_3} Product$.

$$\frac{d[A]}{dt} = -k_1[A] + K_2[R][B]$$

$$\frac{d[R]}{dt} = K_{1}[A] - K_{2}[R][B] - K_{3}[R][C]$$

At steady state
$$\frac{d[R]}{dt} = 0$$

$$[R] = \frac{K_1[A]}{K_2[B] + K_3[C]}$$

$$\frac{d[A]}{dt} = -K_1[A] + \frac{K_2[B] K_1[A]}{K_2[B] + K_3[C]} = \frac{-K_1[A]\{K_2[B] + K_3[C]\} + K_2[B]K_1[A]}{K_2[B] + K_3[C]}$$

$$\frac{d[A]}{at} = \frac{-K_1[A]K_3[C]}{K_2[B] + K_3[C]}$$

$$\Rightarrow \frac{d[a-x]}{dt} = \frac{-K_1[A]K_3[C]}{K_2[B]+K_3[C]}$$

$$\Rightarrow \frac{d[a-x]}{dt} = \frac{-K_1[A]K_3[C]}{K_2[B]+K_3[C]} \Rightarrow \frac{dx}{dt} = \frac{K_1[A]K_3[C]}{K_2[B]+K_3[C]} = \frac{K_1[A]}{1+\frac{K_2[B]}{K_1[C]}}$$

2. 2A
$$\xrightarrow{k_1}$$
 B + 3C, rate = $-\frac{1}{2} \frac{d[A]}{dt} = \frac{1}{3} \frac{d[C]}{dt} = k_1 [A]^2$

B + 3C
$$\xrightarrow{k_{-1}}$$
 3D, rate = $-\frac{1}{3} \frac{d[C]}{dt} = k_{-1} [B] [C]^3$

$$2C \xrightarrow{k_2} 3D$$
, rate $= -\frac{1}{2} \frac{d[C]}{dt} = k_2 [C]^2$

$$\frac{d[C]}{dt} = 3k_1 [A]^2 - 3k_{-1} [B] [C]^3 - 2k_2 [C]^2$$

$$\frac{[B]}{[C]} = \frac{k_1}{k_2} = \frac{0.4}{0.6} = \frac{2}{3}$$

$$\Rightarrow \qquad \mathbf{k}_2 = \frac{3}{2} \, \mathbf{k}_1$$

$$\Rightarrow k_{\text{eff.}} = k_1 + k_2$$
In 2 3 .

$$\frac{\ln 2}{(t_{1/2})_{\text{overall}}} = k_1 + \frac{3}{2} k_1 = \frac{5}{2} k_1$$

$$\Rightarrow \frac{\ln 2}{12} = \frac{5}{2} \frac{\ln 2}{(t_{1/2})_{A \to B}}$$

$$\Rightarrow$$
 $(t_{1/2})_{A \to B} = 30 \text{ hrs.}$

$$\frac{[B]}{[C]} = \frac{2k_1}{3k_2} = \frac{4}{9}$$

$$\Rightarrow \frac{4}{9} [C] + [C] = 2M$$

$$\Rightarrow \frac{13}{9} [C] = 2 \Rightarrow [C] = \frac{18}{13} M$$

:. [B] = 2 - [C] = 2 -
$$\frac{18}{13}$$
 = $\frac{8}{13}$ M.

5.
$$\frac{d}{dt} [CH_3Br] = \frac{k_1[CH_4][Br_2]}{1 + k_2[HBr]/[Br_2]}$$

At initial stages ([HBr] ≈ 0)

$$\frac{d}{dt}$$
 [CH₃Br] = K₁ [CH₄] [Br₂] \longrightarrow 2nd order

At final stages ([Br₂] ≈ 0)

$$\frac{d}{dt} [CH_3Br] = \frac{K_1[CH_4][Br_2]^2}{[Br_2] + K_2[HBr]} = \frac{K_1[CH_4][Br_2]^2}{K_2[HBr]} \longrightarrow 2nd \text{ order}$$

6.
$$k_1 = k_2$$
 (Since [C] = [D] at all the times)

$$\Rightarrow$$
 $\frac{2}{3}$ rd of A has reacted for [A] = [C] = [D]

$$\therefore k_1 + k_2 = \frac{1}{t} \ln \frac{[A]_0}{\frac{1}{3} [A]_0}$$

$$\Rightarrow t = \frac{1}{k_1 + k_2} \ln 3 = \frac{1}{2k_1} \ln 3 = \frac{1}{2k_2} \ln 3$$

Using the r.d.s. approximation method

$$\frac{d \left[\text{CI}_2 \text{CO} \right]}{dt} = k_3 \left[\text{CICO} \right]^{1} \left[\text{CI}_2 \right]^{1}$$

but
$$K_1 = \frac{[CI]^2 [M]}{[CI_2] [M]}$$
 and $K_2 = \frac{[CICO] [M]}{[CI] [CO] [M]}$

$$\Rightarrow$$
 [CICO] = K_2 [CI] [CO] and [CI] = $\sqrt{K_1} \sqrt{[CI_2]}$

$$\therefore \frac{d [Cl_2CO]}{dt} = k_3 K_2 [Cl] [CO] [Cl_2]$$

$$= k_3 K_2 \sqrt{K_1} \sqrt{[Cl_2]} [CO] [Cl_2]$$

$$= k_3 K_2 \sqrt{K_1} [Cl_2]^{3/2} [CO]$$

comparision with the rate law given shows that

$$k = k_3 K_2 \sqrt{K_1}$$

8.
$$\frac{dC_D}{dt} = K_1C_A + K_3C_B - K_2C_D - K_4C_D$$

$$r_0 = K [1] [1]^2 = 10^{-2}$$
 $\Rightarrow K = 10^{-2} M^{-2} S^{-1}$ $\Rightarrow r = 10^{-2} \left[\frac{1}{2}\right] \left[\frac{1}{2}\right]^2 = 1.25 \times 10^{-3} Ms^{-1}$

10. 50% completion in 50 minutes.

73% competion in 100 minutes.

Checking for zero order:

$$t_{1/2} = \frac{C_0}{2K}$$
.

53 min. =
$$\frac{200}{2K}$$
 \Rightarrow $K = \frac{100}{53}$ min⁻¹.

$$\Rightarrow$$

$$\zeta = \frac{100}{53} \text{ min}^{-1}$$
.

$$C_1 = C_0 - 2 K t$$
.

$$C_t = 200 \frac{200}{53} \times 100 = -ve.$$

So, it is not zero order.

For Ist order:

$$t_{1/2} = \frac{\ln 2}{K}$$

$$\Rightarrow$$

$$t_{1/2} = \frac{\ln 2}{K}$$
 \Rightarrow $K = \frac{\ln 2}{53} = \frac{0.693}{53}$.

$$\mathsf{Kt} = \mathsf{In} \bigg(\frac{\mathsf{a}_0}{\mathsf{a}} \bigg) \Rightarrow \frac{\mathsf{ln}\, \mathsf{2}}{\mathsf{53}} \, \times \, \mathsf{100} = \mathsf{In} \bigg(\frac{\mathsf{a}_0}{\mathsf{a}} \bigg).$$

$$\frac{a_0}{a_0} = 3.6972.$$

$$\frac{a_0}{a}$$
 = 3.6972. \Rightarrow a = $\frac{200}{3.6972}$ = 54.1 mm of Hg.

Competion of reaction =
$$\frac{a_0 - a}{a_0} \times 100 = 73\%$$
.

So, it is Ist order.

(b) In Ist order reaction, % completion is independent an initial concentration so, 73% completion takes place.

